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A new strategy has been proposed recently to design broadband plasmonic nanostructures capable of a
significant nanofocusing of light. Applying a singular conformal transformation to a thin slab of metal, a
cylinder with a crescent-shaped cross section is obtained. In this study, the corresponding theory is derived
analytically and different physical insights are provided to analyze the broadband light harvesting and nano-
focusing properties of this device. The optical response of the crescent is deduced by solving the metal-slab
problem. The nanostructure is shown to exhibit a continuous absorption cross section which redshifts for thin
crescents due to a decrease of the surface plasmon velocity. The field enhancement induced by the nanostruc-
ture is also derived analytically. The nanofocusing performance is shown to result from a balance between
dissipation losses and surface-plasmons velocity. This implies a strong dependence of the field enhancement on
the frequency and the crescent geometry. Numerical simulations have also been performed to investigate the
effect of radiative losses when the structure dimension becomes comparable to the wavelength. Radiative
damping makes the absorption cross section saturate at the level of the physical cross section. The field
enhancement decreases with the size of the device. The crescent structure is shown to be quite robust to
radiation losses, which opens perspectives for applications such as single-molecule detection.
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I. INTRODUCTION

Since the pioneering work of Mie1 and Ritchie,2 there has
been a vast amount of research efforts to investigate the elec-
tromagnetic properties of metal/dielectric interfaces �see,
e.g., Refs. 3–6 and references therein�. Such structures can
support surface-plasmon polaritons �SPPs� which are light
waves coupled to free-electron oscillations in the metal. This
results in a strong confinement of light at the metal/dielectric
interface. SPPs can show strong coupling to light and have
wavelengths of only a few tens of nanometers, hence beating
the classical diffraction limit. These unique properties have
opened perspectives in nanophotonics. The subwavelength
confinement of light near a flat dielectric/metal interface has
been used for applications in evanescent surface sensors7 or
in integrated optical circuits.8,9 Localized surface plasmons
can also be excited in a metal particle. Stronger nanofocus-
ing and local enhancement of the field can then be expected.
In the literature, the strategy to obtain a maximum-field en-
hancement consists in combining a strong overall resonance
of the structure with very small and sharp geometric features
where hot spots will arise. Following this principle, several
plasmonic structures have been investigated, such as
triangles/squares with sharp corners,10,11 nanoparticles sepa-
rated by a narrow gap,10,12–22 or crescent-shaped
nanoparticles.23–29 The significant field enhancement, that
such structures may provide, has drawn considerable atten-
tion in surface-enhanced Raman spectroscopy16,23,30,31 or en-
hanced fluorescent emission.32 Until now, the theoretical de-
scription of the optical response of such structures has
remained a challenge. Only numerical simulations have been
performed and few qualitative arguments have been put for-
ward to explain these numerical results. Another severe chal-
lenge for potential applications lies in the spectral bandwidth
over which plasmonic particles can efficiently operate. In-

deed, small devices tend to be efficient collectors at just a
few resonant frequencies, contrary to an infinite structure
that naturally shows a broadband spectrum.5

In a recent article,33 a general strategy based on transfor-
mation optics has been proposed to design and study analyti-
cally plasmonic devices capable of �a� an efficient harvesting
of light over a broadband spectrum both in the visible and
the near infrared regimes; �b� a strong far-field to near-field
conversion of energy, leading to a considerable field confine-
ment and enhancement. This strategy is as follows: start with
an infinite plasmonic system that naturally shows a broad-
band spectrum and then apply a mathematical transformation
that converts the infinite structure into a finite one while
preserving the spectrum. This approach has been illustrated
by two examples: the crescent-shaped cylinder and the kiss-
ing cylinders.33 Some results of the analytical calculations
have been presented to show the power and the elegance of
the conformal transformation tool. However, the demonstra-
tion has remained very general and no analytical proof has
been provided.

In this paper, the corresponding theory is derived in detail
for the crescent-shaped cylinder and different physical in-
sights are provided to explain the broadband harvesting and
nanofocusing properties of this device. The coupling of a
dipole with SPPs supported by an infinite slab of metal is
first investigated analytically �Fig. 1�a��. Then, by applying a
conformal transformation to this system, we deduce the be-
havior of SPPs in a cylinder with a crescent-shaped cross
section and their coupling with the external field �Fig. 1�b��.
An analytical expression of the absorption cross section is
derived. This plasmonic structure is shown to provide an
efficient harvesting of light over a broadband spectrum that
shifts toward red when the crescent gets thinner. This shift is
explained by the decrease in SPPs’ velocity for thin cres-
cents. An expression of the electric field in the crescent ge-
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ometry is also derived analytically. The SPPs are shown to
be excited in the fat part of the crescent and propagate along
its claws toward the tip, where the group velocity vanishes
and energy accumulates. The crescent is thus a strong far-
field to near-field converter of energy: considerable field en-
hancement and confinement at the nanoscale is expected.
The nanofocusing performance results from a balance be-
tween energy accumulation and dissipation losses. Hence,
the field confinement and enhancement strongly depend on
the frequency due to dissipation losses and on the crescent
geometry due to the SPPs velocity. This analytical study re-
lies on the near-field approximation which is valid as long as
the crescent dimension is small compared to the wavelength.
Consequently, numerical simulations have also been per-
formed to investigate the effect of radiative losses for larger
structure dimension. The crescent is shown to be quite robust
relative to radiation damping, its absorption cross section
remaining in the order of its physical cross section, for di-
mension up to 300 nm. Similarly, significant field enhance-
ment is still obtained despite radiation losses.

II. ELECTROSTATIC THEORY

A. Conformal transformation

The conformal transformation leading to the crescent-
shaped cylinder has already been presented in Ref. 33. We
briefly recall the main points here. Our canonical system is a
point dipole located near a thin layer of plasmonic material
�Fig. 1�a��. Now apply the following conformal transforma-
tion:

z� =
g2

z�
, �1�

where z=x+ iy is the usual complex number notation and the
superscript � stands for complex conjugate. The resulting
structure is a cylinder with a crescent-shaped cross section
�Fig. 1�b��. The diameters of the inner and outer cylinders
are, respectively,

Di =
g2

d + a
, Do =

g2

a
. �2�

We also define a key parameter,

� = Di/Do =
a

d + a
, �3�

which is the ratio between the inner and outer diameters. The
transformation of the source is also of particular importance.
The original dipole � is transformed into a uniform electric
field,33

E0� =
1

2��0

�

g2 . �4�

We shall assume that the dimensions of the crescent is
sufficiently small that the surface-plasmon modes are well
described in the near-field approximation. In this case, the
uniform electric field can be taken as due to an incident plane
wave. Moreover, the dielectric properties of the nanostruc-
ture are the same as those of the slab from which it is de-
rived. Also preserved under the transformation is the electro-
static potential

��x,y� = ���x�,y�� . �5�

The mathematics of the conformal transformation closely
links the physics at work in each of the very different geom-
etries. We will first solve the relatively tractable slab problem
and then deduce the solution for the crescent geometry.

B. Coupling of a dipole to a metallic sheet

The coupling of a dipole to a metallic sheet is first ad-
dressed. The near-field approximation is made, hence we as-
sume that the Laplace’s equation is obeyed. The dipole �
consists of two line charges. We wish to calculate the poten-
tial � induced on the dielectric sheet by expanding the inci-
dent field �o of the dipole as a Fourier series in y

�o�r� = −
1

2��0

� · r

r2 =
1

2�
� dk�o�k�eiky . �6�

�o�k� can be found by making a Fourier transform in a trans-
verse plane at an arbitrary position x

�o�k� =� �o�x,y�e−ikydy = a�k�e−�k��x�, �7�

with

a�k� =
− sgn�x��x + i sgn�k��y

2�0
. �8�

Next we calculate the field ��k� induced by the metal plate
located between a�x�a+d. As illustrated by Fig. 2, this
field can be expressed as follows:

��k� = �b�k�e�k�x, x � a

c�k�e−�k�x + d�k�e�k�x, a � x � a + d

e�k�e−�k�x, x � a + d .
� �9�

The four unknowns b�k�, c�k�, d�k�, and e�k� are then deter-
mined by the boundary conditions at the dielectric slab inter-
faces. Two are derived from the parallel component of the
electric field being conserved at a boundary,

FIG. 1. �Color online� �a� A thin layer of metal supports SPPs
that couple to a 2D dipole source, transporting its energy to infinity.
�b� The transformed material is a cylinder with a cross section in the
form of a crescent. The dipole source � is transformed into a uni-
form electric field E0.
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a�k�e−�k�a + b�k�e�k�a = c�k�e−�k�a + d�k�e�k�a,

c�k�e−�k��a+d� + d�k�e�k��a+d� = e�k�e−�k��a+d�

and two from conservation of the normal component of the
displacement field,

a�k�e−�k�a − b�k�e�k�a = ��c�k�e−�k�a − d�k�e�k�a� ,

��c�k�e−�k��a+d� − d�k�e�k��a+d�� = e�k�e−�k��a+d�.

Solving these four equations provides the following results:

b�k� =
� − 1

� + 1

e−2�k�a�1 − e2�k�d�
e2�k�d − e2�

a�k� , �10�

c�k� =
2

� + 1

e2�k�d

e2�k�d − e2�
a�k� , �11�

d�k� =
2�� − 1�
�� + 1�2

e−2�k�a

e2�k�d − e2�
a�k� , �12�

e�k� =
4�

�� + 1�2

e2�k�d

e2�k�d − e2�
a�k� , �13�

where we have introduced,

e2� = 	 � − 1

� + 1

2

. �14�

The dispersion of the excitations can be found from the con-
dition that b�k� diverges,

�k�d = � = �ln	 � − 1

� + 1

 , if Re��� � − 1

ln	1 − �

� + 1

 , if − 1 � Re��� � 1.� �15�

This is the classical dispersion relation for SPPs in an
insulator-metal-insulator structure upon the near-field ap-
proximation.

Now that the induced potential is known in the k space, it
can be deduced in the real space via an inverse Fourier trans-
form,

��x,y�

=
1

2���
b�k�eiky+�k�xdk , x � a

� �c�k�e−�k�x + d�k�e�k�x�eikydk , a � x � d + a

� e�k�eiky−�k�xdk , x � d + a .
�

�16�

Let us tackle with the field induced at the dipole, i.e., for x
�a. By injecting the expressions of a�k� �Eq. �8�� and b�k�
�Eq. �10��, we obtain

− ��x � a� =
1

4��0

� − 1

� + 1

	� ��x − i sgn�k��y�
e−2�k�a�1 − e2�k�d�

e2�k�d − e2�

	eiky+�k�xdk . �17�

To perform this integration, we write

�k� = lim

→0

�k2 + 
2�1/2.

The analytic structure of Eq. �17� is shown in Fig. 3. We
shall make the approximation that the integral is dominated
by either of the poles close to the real axis which correspond
to surface-plasmon modes carrying away energy to infinity.
The cuts correspond to localized virtual excitations which, if
� is real, dissipate no energy. Therefore in the limit of real �
our expression for dissipation will be exact, but otherwise
only approximate. Therefore, from now, we will only con-
sider the frequency band below the surface-plasmon fre-
quency, ���sp, for which ��−1. Actually, beyond �sp, the
imaginary part �I of the metal permittivity becomes compa-

FIG. 2. �Color online� Sketch of the electrostatic potential in-
duced in a metallic slab by a dipole � at x=0 for ��−1.

FIG. 3. �Color online� Analytic structure of the integrand of Eq.
�17�. There are two cuts running from −i
 and +i
 along the imagi-
nary axis. There are also two poles if ��0 �disks�. If ��0, these
poles vanish in the cuts and give no contribution. Note that if ��
−1, the poles are correctly placed but they swap to opposite sides of
the real axis if ��−1.
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rable to its real part �R and the contribution from the cuts
shown in Fig. 3 is no longer negligible.

The calculation of the integral in Eq. �17� leads to

− ��x � a� =
1

d�0

�

�2 − 1
�i�x + sgn�y��y�e��x−2a�/dei��y�/d.

�18�

The same technique of integration can be used to compute
the field � for x�a. It yields

− ��a � x � a + d�

=
1

2d�0
�i�x + sgn�y��y�� e−�x/d

� + 1
+

e��x−2a�/d

� − 1
�ei��y�/d, �19�

− ��x � a + d� =
1

d�0

�

�� + 1�2 �i�x + sgn�y��y�e−�x/dei��y�/d.

�20�

C. Electric field induced at the dipole and dipolar moment of
the crescent

From the expression of the induced potential � for x�a
�Eq. �18��, we can deduce the electric field at the dipole

E�z = 0� = − ���z = 0� =
i�

d2�0

�

�2 − 1
e−2�a/d� . �21�

This electric field induced at the dipole is of particular inter-
est, since it is directly related to the net dipole moment p of
the crescent in the transformed geometry. Indeed, similarly to
the relation linking the emitting dipole � to a uniform elec-
tric field E0� in the crescent geometry �Eq. �4��, the dipole
moment p can be deduced from E�z=0�,

p = 2��0g2E�z = 0� . �22�

Injecting the expression of E�z=0� �Eq. �21�� into the last
equation, replacing � by its expression �Eq. �4�� and using
the fact that g2 /d=�Do / �1−�� and a /d=� / �1−�� �Eqs. �2�
and �3��, the induced dipole moment can be expressed as the
product of a polarizability with the incident electric field E0�
in the transformed frame,

p = i4�2�0� �

1 − �
�2

Do
2�

�

�2 − 1
e−2��/�1−��

polarizability �

E0�.

�23�

D. Absorption cross section

Dipoles and fields exchange roles in the two frames, but
the product is unchanged. Therefore, energy dissipation is
the same in each geometry. In the slab frame, the dipole
energy pumped into the SPPs �Fig. 1�a�� can be calculated
from the electric field due to the excited modes evaluated at
the dipole34,35

P = −
�

2
Im
�� · E�z = 0�� . �24�

This dipole power dissipated maps directly onto the power
absorbed by the crescent from the uniform electric field E0�
that we shall take as due to an incident plane wave in the
transformed frame,36

P = −
�

2
Im
E0�

� · p� . �25�

If we inject the expression of p �Eq. �23�� into the last equa-
tion and renormalize it by the incoming flux Pin
=�0c0�E0��

2 /2, the absorption cross section �a= P / Pin of the
crescent can be deduced

�a = 4�2k0
2	 �

1 − �

2

Do
2 Re�ln	 � − 1

� + 1

 �

1 − �2	 � − 1

� + 1

−2�/1−�� ,

if Re��� � − 1, �26�

where we have replaced � by its expression as a function of
the permittivity � �Eq. �15��. k0=� /c0 is the wave number in
vacuum. Note that, rigorously, this expression corresponds to
the extinction cross section of the crescent. However, as ra-
diation losses are neglected under the quasistatic approxima-
tion, this quantity is here strictly equivalent to the absorption
cross section. Note also that all orientations of the incident
electric field are equally effective at excitation. The absorp-
tion cross section scales as the square of the physical size Do
of the crescent, which is typical of a two-dimensional con-
figuration.

Figure 4 displays the absorption cross section �a as a
fraction of the physical cross section for Do=20 nm. For this
figure as well as in the following of the study, the metal is
assumed to be silver with a surface plasma frequency �sp
=3.67 eV and permittivity taken from Johnson and
Christy.37 As already pointed out by Aubry et al.,33 the cres-
cent exhibits a broadband spectrum that shifts toward red

FIG. 4. �Color online� Absorption cross section as a fraction of
the physical cross section as a function of frequency for different
shapes of crescents ��=0.2 in blue, �=0.5 in green, and �=0.8 in
red� with Do=20 nm. The metal is assumed to be silver with a
surface plasma frequency �sp=3.67 eV and permittivity taken from
Johnson and Christy �Ref. 37�. The absorption spectrum of one
individual cylinder �Ref. 38� is also shown for comparison �dashed
black line�.

AUBRY et al. PHYSICAL REVIEW B 82, 125430 �2010�

125430-4



when the crescent gets thinner. Physically, this redshift can
be explained by means of the velocity of SPPs along the
crescent. As we will see in Sec. II E, the SPPs’ velocity de-
creases when the crescent gets thinner and the dissipation
losses tend to increase when we approach the surface-
plasmon frequency. Hence, in a thin crescent, SPPs cannot
propagate in the nanostructure when �→�sp. This explains
the weak coupling of thin crescents with an external field at
the vicinity of the surface-plasmon frequency.

Note that the crescent is a powerful light-harvesting de-
vice over a broadband spectrum both in the near infrared and
visible regimes �
�340→1700 nm, see Fig. 4�. The broad-
band feature is highlighted by the comparison with the single
cylinder case in Fig. 4. The absorption cross section of the
crescent is on the order of the physical cross section even for
such a small particle size �Do=20 nm�. For constant ratio �,
�a /Do scales linearly with Do. Thus cross sections higher
than the physical size could be obtained for larger diameter
crescents but in this case our near-field analytic theory may
not be valid.33

E. Electric field in the transformed geometry

A cylinder with a crescent-shaped cross section is a nano-
structure capable of an efficient harvesting of light over the
visible and near-infrared spectra. As we will see now, this is
also a strong far-field to near-field converter of energy, pro-
viding a considerable confinement and amplification of the
electric field in the vicinity of its physical singularity.

Under the conformal transformation, the potential is pre-
served �Eq. �5��. The electric field E��x� ,y�� in the crescent
can then be easily deduced from the potential,

E�u� = −
��

�x

�x

�u�
−

��

�y

�y

�u�
�27�

with u�=x� ,y�. Using the expression of the potential � given
in Eqs. �18�–�20�, the electric field E� can be expressed as a
function of E0� �Eq. �4��, Do �Eq. �2��, and � �Eq. �3��. It
yields for ��−1,

�1� For �z�−Do /2��Do /2 �outside the crescent�:

Ex�
� = 2� ln	 � − 1

� + 1

 �

1 − �2	 � − 1

� + 1

−2�/1−� �2

�1 − ��2

Do
2

�x� − i�y���2

	 �iE0x� + sgn�y��E0y��exp	 ��

1 − �

Do

�x� − i�y���

 , �28�

Ey�
� = 2� ln	 � − 1

� + 1

 �

1 − �2	 � − 1

� + 1

−2�/1−� �2

�1 − ��2

Do
2

�x� − i�y���2

	 �sgn�y��E0x� − iE0y��exp	 ��

1 − �

Do

�x� − i�y���

 . �29�

�2� For �z�−Do /2��Do /2 and �z�−Di /2��Di /2 �in the
metal�:

Ex�
� = �

�2

�1 − ��2 ln	 � − 1

� + 1

�iE0x� + sgn�y��E0y��

	� 1

� + 1

Do
2

�x� + i�y���2exp	−
��

1 − �

Do

�x� + i�y���



+
1

1 − �
	 � − 1

� + 1

−2�/1−� Do

2

�x� − i�y���2

	exp	 ��

1 − �

Do

�x� − i�y���

� , �30�

Ey�
� = �

�2

�1 − ��2 ln	 � − 1

� + 1

�sgn�y��E0x� − iE0y��

	 �−
1

� + 1

Do
2

�x� + i�y���2exp	−
��

1 − �

Do

�x� + i�y���



+
1

1 − �
	 � − 1

� + 1

−2�/1−� Do

2

�x� − i�y���2

	exp	 ��

1 − �

Do

�x� − i�y���

� . �31�

�3� For �z�−Di /2��Di /2 �inside the crescent�:

Ex�
� = 2�

�

�� + 1�2

�2

�1 − ��2 ln	 � − 1

� + 1

 Do

2

�x� + i�y���2

	 �iE0x� + sgn�y��E0y��exp	−
��

1 − �

Do

�x� + i�y���

 .

�32�

Ey�
� = − 2�

�

�� + 1�2 ln	 � − 1

� + 1

 �2

�1 − ��2

Do
2

�x� + i�y���2

	 �sgn�y��E0x� − iE0y��exp	−
��

1 − �

Do

�x� + i�y���

 .

�33�

In the near-field approximation, which holds when the di-
mensions of the crescent are less than the wavelength, the
enhancement of electric field is independent of the size of the
system. Figure 5 shows the result of our analytical calcula-
tion of the field distribution in the crescent for different fre-
quencies and ratios �. The metal is still assumed to be silver
with permittivity taken from Johnson and Christy.37 These
field distributions can be easily interpreted with conformal
transformation as already discussed in Ref. 33. Here, we
briefly recall the main points. In the slab frame, the surface-
plasmon modes transport the energy of the dipole out to in-
finity �see Fig. 1�. In the transformed frame, the same modes
are excited in the fat part of the crescent and then propagate
around the claws in an adiabatic fashion. As SPPs propagate
toward the structure singularity, their wavelength shortens
and velocity decreases in proportion, similarly to what hap-
pens in sharp metallic tips or grooves.39–41 This brief quali-
tative account is confirmed by our analytical calculation.
Considering Eqs. �28� and �29� at the surface of the crescent,
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one can show that the phase �sp of SPPs along the crescent
surface varies as

�sp��� = �
�

1 − �
tan��/2� , �34�

where the angle � is defined in the inset of Fig. 6�a�. This
expression confirms that the SPPs wavelength and velocity,
proportional to �d�sp /d��−1, vanish at the structure singular-
ity ��=��. The dependence in � provides the dispersion re-
lation of SPPs which is strictly equivalent to the one derived
in the slab geometry �Eq. �15��. At last, the term � / �1−��
implies a decreasing of SPPs wavelength and velocity when
the crescent gets thinner ��→1�. As pointed out previously
in Sec. II D, this fact explains the shift toward red of the
absorption spectrum for finer crescents. As we will see in
Sec. II F, the crescent shape has also a strong influence on
the nanofocusing properties of the device.

In an ideal lossless metal, the cancellation of the SPPs
velocity would lead to an accumulation of energy at the
structure singularity. In practice finite loss resolves the situ-
ation leading to a balance between energy accumulation and
dissipation.33 Figure 5 shows that the field confinement
around the structure singularity strongly depends on the fre-
quency � and the crescent geometry. The physical mecha-
nisms governing the nanofocusing performance of the cres-
cent are discussed in the following section.

F. Field enhancement at the surface of the crescent

The evaluation of Eqs. �28� and �29� at the surface of the
crescent provides an expression for the field enhancement
�E�� /E0�=��Ex�

� �2+ �Ey�
� �2 /E0� as a function of the angle �, de-

fined in Fig. 6�a�,

�E�

E0�
� = 2��2

�2

�1 − ��2�ln	 � − 1

� + 1

 �

1 − �2	 � − 1

� + 1

−�/1−��

	

exp	−
�

1 − �
Im
���tan��/2��


cos2��/2�
. �35�

The effect of dissipation losses appears in the exponential
term of the last equation: they truncate the growth of the field
when surface-plasmons approach the structure singularity
��=��. From Eq. �35�, the angle �max at which the maximum
field enhancement occurs can be easily deduced,

�max = � − a sin	 �

1 − �
Im
��
 . �36�

Using the fact that Im
��=a tan�2�I / ����2−1��, �max can be
explicitly expressed as a function of the permittivity imagi-
nary part �I,

�max � � −
2�

1 − �

�I

���2 − 1
, if �I � ���2 − 1. �37�

This expression of �max shows that an increase in the dissi-
pation losses makes the maximum field enhancement shift to
smaller angles, resulting in a worse confinement of the field
around the structure singularity. �max also depends on the
crescent geometry through the term � / �1−��: when the cres-
cents gets thinner ��→1�, the field tends to spread spatially

FIG. 5. �Color online� Amplitude of the real part of Ex�
� normal-

ized by the incoming field E0� �polarized along x�� at different fre-
quencies ��=0.6�sp and 0.8�sp� and shapes of crescent ��=0.5,
0.7, and 0.9�. The color scale is restricted to �−10 10� but note that
the field magnitude is by far larger around the singularity of the
structures.

FIG. 6. �Color online� �a� Field enhancement, �E�� /E0�, along the
crescent surface as a function of the angle � and frequency for �
=0.8. �b� Field enhancement, �E�� /E0�, along the crescent surface as
a function of the angle � and � for �=0.75�sp. For both panels, the
color bar is in log scale.
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along the crescent surface. This is explained by the decrease
in the SPPs wavelength and velocity for thinner crescents
�Eq. �34��: the SPPs are then absorbed before getting close to
the crescent tips in this case.

By injecting the expression of �max �Eq. �37�� into Eq.
�35�, one can deduce the maximum field enhancement,
�Emax� /E0��, that can be expected at the surface of the crescent

�Emax�

E0�
� �

2��2

e2 �ln	 � − 1

� + 1

 �

1 − �2	 � − 1

� + 1

−�/1−��

	
����2 − 1�2

�I
2 , if �I � ���2 − 1. �38�

This expression shows that the dissipation losses reduces the
growth of the field as the inverse square of the permittivity
imaginary part �I.

Figure 6�a� displays the field enhancement �Eq. �35��
along the crescent surface as a function of frequency, calcu-
lated using the Johnson and Christy data.37 At low frequen-
cies, the field is strongly confined in the vicinity of the
touching point and a spectacular field enhancement larger
than 104 is predicted. This enhancement then decreases with
frequency due to the increase in dissipation losses in silver
when we approach the surface-plasmon frequency. Figure
6�b� displays the field enhancement along the crescent sur-
face as a function of the ratio �. As explained previously, the
lower velocity of SPPs when the crescent gets thinner im-
plies a spatial spreading of the electric field. The magnitude
of the enhancement is thus determined by how far around the
nanostructure the wave field can propagate before being ab-
sorbed.

Note that the field enhancement displayed by Fig. 6 may
be unrealistic in practice. There are indeed two limits to our
electrostatic model. �i� A microscale limit: when the size of
the device becomes comparable with the wavelength, radia-
tion losses are no longer negligible and will reduce the field
enhancement induced by the nanostructure. This point will
be discussed in Sec. III. �ii� A nanoscale limit: at small length
scales, continuum electrodynamics is no longer valid and
nonlocal effects will play a role especially at the tips of the
crescent, where the imaginary part of the dielectric function
will increase.42 This increase in �I will truncate the growth of
the field along the crescent surface and reduce the field en-
hancement compared to our theoretical prediction �Eq. �38��.

III. RADIATION LOSSES

We now investigate the effect of radiation losses on the
harvesting and nanofocusing performances of the crescent.
As already shown in Ref. 33, radiation losses make the ab-
sorption cross section falls compared to our theoretical pre-
dictions when the structure dimension becomes comparable
to the wavelength. Nevertheless, we will show, by means of
numerical simulations, that the crescent structure is quite ro-
bust to radiation losses. This fact is important in perspective
of future experiments.

A. Methods

All the numerical results presented have been obtained
using COMSOL MULTIPHYSICS™, a commercial software
implementing the finite element method. Two-dimensional
simulations were performed within the harmonic propagation
analysis mode in the frequency domain. Highly nonuniform
adaptive meshes were used in order to model accurately the
propagation of electromagnetic fields at the geometrical sin-
gularities of the nanostructures under study. The convergence
of the numerical calculations with respect to the mesh size
and the total simulation area has been checked. Mesh sides
below 10−4 nm and simulation areas above 4 �m2 were
considered. As in the analytical calculations, the optical re-
sponse of silver was modeled through the fit of Johnson and
Christy experimental data.37

B. Absorption cross section

Figure 7 compares the absorption spectra normalized by
Do obtained numerically for different sizes of crescent. For a
dimension of 20 nm, the quasistatic approximation is verified
and a good agreement is found between the numerical and
analytical results. For larger dimensions ��100 nm�, radia-
tion damping becomes important and the absorption cross
section falls compared to the theoretical results: electrostatic
theory predicts a scaling of �a as Do

2 �Eq. �26�� which is
clearly not the case here.33 However, Fig. 7 shows that the
absorption cross section remains at least on the order of the
physical cross section, whatever the structure dimension, and
can be even larger for Do=100 nm. As already pointed out
in the literature,6 retardation effects lead to a shift of the
absorption spectrum toward red compared to the electrostatic
predictions �see the comparison between Do=20 nm and
100 nm�. Interestingly, Fig. 7 indicates that the broadband
behavior of the crescent is kept and even improved for large
structure dimensions.

C. Field enhancement

Figure 8 compares the field enhancement along the cres-
cent surface ��=0.8� obtained numerically for different

FIG. 7. �Color online� Absorption cross section normalized by
the physical cross section as a function of frequency for the crescent
with �=0.8. The incident field is polarized along x�. The numerical
absorption spectra �dots� are displayed for different structure di-
mensions �20, 100, 200, and 300 nm�. The theoretical absorption
spectrum is also displayed for Do=20 nm �continuous blue line�.
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structure dimensions with our theoretical prediction. The
electrostatic theory states that the field enhancement does not
depend on the size of the device, hence each curve can be
compared on the same basis. As observed for the absorption
cross section, there is a remarkable agreement between
theory and the numerical result for Do=20 nm. For larger
structure dimension �Do�100 nm�, radiation damping is no
longer negligible and the field enhancement falls compared
to our analytical prediction. However, the device still pro-
vides a significant nanofocusing of light with a maximum
enhancement factor equal to 2	102 for Do=200 nm
whereas electrostatic theory predicts 6	102. The nanofocus-
ing properties of the device are thus quite robust to radiation
losses. Figure 8 also shows how our theory accurately pre-
dicts the wavelength of SPPs in the crescent whatever the
size of the device.

IV. CONCLUSION

To briefly conclude, this study shows how a singular con-
formal transformation provides an elegant tool to design a
plasmonic structure capable of an efficient harvesting of light
over the visible and near-infrared spectrum. Starting from an
infinite slab of metal, the optical response of a cylinder with
a crescent-shaped cross section has been deduced analyti-
cally. Surface-plasmon modes are shown to be excited in the
fat part of the crescent and then propagate toward the tip
where the group velocity vanishes and energy accumulates.
This device exhibits a broadband absorption spectrum which
redshifts for thinner crescents. This shift is explained by a
decrease in the SPPs’ velocity when the crescent gets finer.
The nanofocusing performance of the device is the result of a
balance between energy accumulation and dissipation losses.
A strong field enhancement �up to 104� and confinement are
predicted within the classical approach. The nanofocusing
performance strongly depends on frequency �due to dissipa-
tion losses� and on the shape of the crescent �due to SPPs’
velocity�. Numerical simulations have shown that such plas-
monic structures are robust to radiation losses. The absorp-
tion cross section is on the order of the physical cross section
over the whole visible spectrum for structure dimension up
to 300 nm. In addition, significant field enhancement is still
induced by the structure at such dimension. The proposed
plasmonic nanostructure would find great potential applica-
tions in surface-enhanced Raman scattering, single molecular
detection and high-harmonic generation. The experimental
challenge lies in the fabrication of such a nanostructure with
a nicely shaped singularity.
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